Vesicular Transport Overview

3 PATHWAYS OF VESICULAR TRANSPORT

  • Secretory pathway: delivers cargo to the plasma membrane.
  • Endocytic pathway: uptake cargo from the plasma membrane.
  • Retrieval pathway: recycles cellular molecules.

KEY FACTS ABOUT VESICULAR TRANSPORT:

  • Compartment lumens mix via the transport intermediate.
  • The membrane of each vesicle maintains its orientation.
  • If the cell is growing, the secretory pathway is more active than the endocytic pathway.

STEPS IN SECRETORY PATHWAY

  • Transport vesicles bud from the ER and carry content away from it to cis side of Golgi.
  • Vesicular budding and fusion mediates the transport of cargo through the Golgi stacks, from cis to trans side.
  • Cargo exits the Golgi via a transport vesicle on trans side.
  • Transport vesicles fuse with plasma membrane or with endosomes (and then lysosomes).

STEPS IN ENDOCYTOTIC PATHWAY

  • Early endosome forms from plasma membrane and extracellular materials.
  • Early endosome targets cargo to late endosomes.
  • Late endosomes then deliver cargo to lysosomes, which degrade cargo.

THE RETRIEVAL PATHWAY TAKES SEVERAL FORMS

  • Endosomes can return cargo to the cell surface via recycling endosomes.
  • Cargo in early and late endosomes can also return to the Golgi for reuse.
  • Vesicles can deliver proteins from the trans face to the cis face of the Golgi.
  • Vesicles can return proteins from the golgi to the ER as well.

3 STEPS OF VESICULAR FORMATION

  • Cargo selection. Incorporation of cargo into a vesicle is carefully regulated to ensure that only the correct cargo gets transported.
  • Vesicular budding. deformation of the hydrophobic membrane bilayer and breaking off of the membrane into a vesicle
  • Vesicular targeting and fusion. Highly regulated just like cargo selection.

Cellular compartments are topologically equivalent when:

• Molecules can get from one to another without having to cross a membrane.
• Nuclear envelope, ER, Golgi, transport vesicles, endosomes, lysosomes, and extracellular space = topologically equivalent

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s